Abstract

Sensor data fusion has significant potential for advancing discovery, processing, and inspection of engineering materials. The paper reviews recent developments in data fusion with respect to materials inspection, highlights potential areas for materials growth, and shows results from application of matching component analysis (MCA). The main contributions of the paper include analysis of current fusion methods to uncover challenges and opportunities with respect to two inspection modalities (scanning acoustic microscopy and eddy current testing); and presenting an extension of MCA which has previously developed for other image modalities. Presenting MCA highlights the benefits towards a baseline method of SAM-EC fusion using the <i>Multi-Scale Mixed Modality Microstructure Titanium Assessment Characterization </i>(M4TAC) challenge dataset. Example results are presented with current motivations of enhancements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.