Abstract

Sewage discharge from an ocean outfall is subject to water quality standards, which are often stated in probabilistic terms. Monte Carlo simulation (MCS) has been used in the past to evaluate the ability of a designed outfall to meet water quality standards or compliance guidelines associated with sewage discharges. In this study, simpler and less computer-intensive probabilistic methods are considered. The probabilistic methods evaluated are the popular mean first-order second-moment (MFOSM) and the advance first-order second-moment (AFOSM) methods. Available data from the Spaniard's Bay Outfall located on the east coast of New-foundland, Canada, were used as inputs for a case study. Both methods were compared with results given by MCS. It was found that AFOSM gave a good approximation of the failure probability for total coliform concentration at points remote from the outfall. However, MFOSM was found to be better when considering only the initial dilutions between the discharge point and the surface. Reasons for the different results may be the difference in complexity of the performance function in both cases. This study does not recommend the use of AFOSM for failure analysis in ocean outfall design and analysis because the analysis requires computational efforts similar to MCS. With the advancement of computer technology, simulation techniques, available software, and its flexibility in handling complex situations, MCS is still the best choice for failure analysis of ocean outfalls when data or estimates on the parameters involved are available or can be assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.