Abstract

This article presents general modeling approaches to achieve an accurate real-time simulation (RTS) of high switching frequency converters.The proposed methods are based on the direct mapped method (DMM) and make use of decoupling techniques when appropriate. The DMM links state variables to diode statuses and provides an exact and noniterative solution to network equations. An electric vehicle battery charger test case comprised of a full-bridge rectifier, an interleaved boost, and a three-phase <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LLC</i> is used to demonstrate the high accuracy achieved by the proposed methods compared to a conventional approach. Field-programmable gate array (FPGA) implementations are proposed and shown to achieve from 75- to 175-ns RTS time steps for this test case circuit, allowing its accurate simulation while switched at 200 kHz. To further validate the effectiveness of the FPGA-based simulator, a resonant boost converter is also implemented and simulated in real time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.