Abstract
This paper proposes an easy-to-implement method for detecting and assessing two of the most frequent PQ (Power Quality) problems: voltage sags and swells. These can affect sensitive equipment such as computers, programmable logic controllers, contactors, etc. Therefore, it is of great interest to implement it in any laboratory, not only for protection reasons but also as a safeguard for claims against the supply company. Thanks to the actual context, in which it is possible to manage big volumes of data, connect multiple devices with IoT (Internet of Things), etc., it is feasible and of great interest to monitor the voltage at specific points of the network. This makes it possible to detect voltage sags and swells and diagnose which points are more prone to this type of problems. For the detection of sags and swells, a program written in Python is in charge of crawling all the files in the database and target those RMS values that fall outside the established limits. Compared to LabVIEW, which might have been the most logical alternative, being the acquisition hardware from the same company (National Instruments), Python has a higher computational performance and is also free of charge, unlike LabVIEW. Thanks to the libraries available in Python, it allows a hardware control close to what is possible using LabVIEW. Implemented in MATLAB, the ITIC (Information Technology Industry Council) power acceptability curve reflects the impact of these power quality disturbances in electrical power systems. The results showed that the combined action of Python and MATLAB performed well on a conventional desktop computer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.