Abstract

This paper focuses on application of spectral estimation methods for scattering center’s radar cross section estimation and reduction under given frequency-angular observation conditions. A methodological approach has been developed to reduce the local center’s radar cross section with given object overall dimensions. The developed methodological approach is based on parametric optimization of object geometry, firstly, to reduce the local scatterer radar cross section and, secondly, to maximize object payload. The problem overview is presented in the introduction. The first section is devoted to mathematical formulation of the problem. The following section includes the comparison analysis of the different types of geometrical shapes. As a result, the object with exponential profile is chosen as the best one due to the ability to manage rear vertex local scatterer amplitude by changing the curvature parameter. In the third section the optimal curvature parameter value of the exponential profile is justified for the given object overall dimensions and frequency-angular observation conditions. It is demonstrated that the main characteristic to analysis is two-dimension functional dependence of the local scatterer mean radar cross section from geometrical parameter and angle of observation. It is proved that this mentioned dependence may be received by the implementation such well-known spectral estimation method as CLEAN to the object sinogram. The recognition range is calculated for two different hypothetical radars to assert the efficiency. It is offered in the conclusion to complicate the developed approach with radio absorption materials implementation as the direction of the future investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.