Abstract

A nonlinear phase-field model, accounting for the Butler–Volmer electrochemical reaction kinetics, is developed to investigate the dendritic patterns during an electrodeposition process. Using lithium electrodeposition as an example, the proposed model is first verified by comparison with the Nernst equation in a 1D equilibrium system. The nonlinear electrochemical kinetics is also confirmed at non-equilibrium condition. The dendritic patterns are examined as a function of applied voltage and initial electrode surface morphology. A design map is proposed to tailor the electrode surface morphology and the applied voltage to avoid undesired dendritic patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.