Abstract

To explore the relationship between charge characteristics of rice roots and aluminum (Al) tolerance of rice, roots of 47 different rice genotypes were obtained by hydroponic experiment. The zeta potentials of roots were determined by streaming potential method, and the Al tolerance and the functional groups of rice were measured by relative root elongation and infrared spectroscopy (ATR-FTIR), respectively. The exchangeable, complexed and precipitated Al(III) sorbed on the root surface of rice was extracted with 1 mol L−1 KNO3, 0.05 mol L−1 EDTA-2Na and 0.01 mol L−1 HCl, respectively. There was a significant correlation between the zeta potentials and the relative elongation of rice roots, indicating that the zeta potentials of rice roots could be used to characterize rice tolerance to Al toxicity. Twelve Al-tolerant rice varieties, 25 medium Al-tolerant rice varieties, and 10 Al-sensitive rice varieties were obtained. The Al-tolerant rice varieties sorbed less complexed Al(III) and total Al(III) because there was lower negative charge on their roots compared to less tolerant genotypes. A correlation analysis showed that there were significant negative correlations between the zeta potential, relative root elongation, and the total Al(III) sorption capacity of the roots, which further confirmed the reliability of using the root zeta potential to characterize rice tolerance to Al toxicity. The results of this paper provide a new method for screening Al-tolerant rice varieties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.