Abstract

By reconciling differences between the estimator and the filter of a code excited linear predictive (CELP) voice coder, higher quality is achieved in the output speech. The pulse amplitudes and pitch tap gain are solved for simultaneously to minimize the estimator bias in the CELP excitation. Increased signal to noise ratio is accomplished by modifying the pitch predictor such that the pitch synthesis filter accurately reflects the estimation procedure used to find the pitch tap gain, and by improving the excitation analysis technique such that the pitch predictor tap gain and codeword gain are solved for simultaneously, rather than sequentially. These modifications do not result in an increased transmission rate or significant increase in complexity of the CELP coding algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.