Abstract

Various computer simulations of molten glass flow have been used for the design, operation and trouble shooting of glass tank furnaces. It is necessary to predict the degree of thermal convection of molten glass, whose viscosity is affected by the major composition of glass and thermal conductivity of which varies with the ferrous oxide (FeO) content. The thermal conductivity decreases as the FeO content increases. Thermal convection is characterized by the Rayleigh number, Ra, and the Prandtl number, Pr. Typically, Ra is expected to be large for a small thermal conductivity, but the actual thermal convection is weaker in this case than when the thermal conductivity is large. To elucidate the underlying convection mechanism, a two-dimensional mathematical flow model is developed in this study. Non dimensional formulation of the governing equations shows that Pr–1 affects the degree of thermal convection. The effective value of Ra, Raeff, is introduced to evaluate the influence of temperature-dependent properties on thermal convection. An evaluation method of thermal convection is proposed and extended to glasses with different thermal conductivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.