Abstract

A method based on close loop control of four degrees of freedom (4DF) is proposed to enhance angular and translational stability of beams in multi-beam microscopy including STED, RESOLFT and CARS, etc. Deviations of multi-beams can be measured and corrected by our module, which is composed of four degrees of freedom position sensitive detectors (4DF PSD) and two actuator mirrors (AM) with motor and piezo servos. An output crosslink matrix obtained by a self-learning process is used to control four actuators to compensate for 4DF independently in beam deviations. We realize a standard deviation within about 2 µm at the entrance pupil plane (a spatial optical path of 180 cm for the whole system) using a compact stabilization system, which is equivalent to around 3 nm at the sample plane under the 100× objective lens with a focal length of 2 mm, corresponding to an improvement of stability by an order of magnitude. Our method can react fast in real time and compensate for large disturbances caused by air agitation or temperature variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.