Abstract

This paper describes an offline low-temperature derivatization method combined with gas chromatography-isotope ratio mass spectrometry (GC-IRMS) to enable compound-specific isotope analysis (CSIA) of C and N in the explosive compound 3-nitro-1,2,4-triazole-5-one (NTO). NTO is being used widely as a component of insensitive munition (IM) composites such as IMX-101, a formulation that is being used to replace the more shock sensitive TNT in artillery shells. The alkylation of NTO with methyl iodide (MeI) as the derivatization reagent was performed in acetone solution at room temperature using triethylamine (Et3N) as a base catalyst. The methylated product of NTO derivatization was identified as 4-methyl-3-nitro-1,2,4-triazol-5-one (MNTO). Accurate and reproducible results were achieved by systematic optimization of MeI and Et3N concentrations and reaction time. Isotopic values of MNTO obtained by GC-IRMS were normalized against those of two 2,4-dinitroanisole (DNAN) in-house reference materials that had been calibrated with isotopic standard reference materials, USGS40 and USGS41a. The resulting method detection limit for derivatization/GC-IRMS of NTO was 788ng of NTO, yielding a precision of ±0.3‰ for both δ13C and δ15N values in good agreement with δ13C and δ15N values for NTO determined by elemental analyzer-IRMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.