Abstract
Advances in mobile computing and miniature devices have contributed to the accelerated development of wearable technologies for clinical applications. The new trend of wearable technologies has fostered a growth of interest for sensors that can be easily integrated into wearable devices. In particular, photoplethysmography (PPG) is especially suitable for wearable sensing, as it is low-cost, noninvasive, and does not require wet electrodes like the electrocardiogram. Photoplethysmograph signals contain rich information about the blood pulsating variation which is strongly related to the electrical activities of the heart. Therefore, in this paper we hypothesize that the ambulatory PPG monitoring could be employed for arrhythmia detection and classification. This paper presents a method for classifying ventricular premature contraction (VPC) and ventricular tachycardia (VT) from normal sinus rhythm (NSR) and supraventricular premature contraction (SVPC) recorded in patients going through ablation therapy for arrhythmia. Although occasional VPCs are benign, the increase in the frequency of VPC events may lead to VT, which in turn,could evolve into ventricular fibrillation and sudden cardiac death. Therefore the accurate measurement of VPC frequency and early detection of VT events becomes essential for patients with cardiac disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.