Abstract

Spontaneous water imbibition is an important mechanism in water-wet fractured reservoirs. For volume-fractured reservoirs, to evaluate the oil productivity and oil recovery through water counter-current imbibition, we propose an analytical method for optimizing the reservoir volume fracturing scheme. Based on the two-phase fluid flow differential equation for capillary force, a three-dimensional water imbibition productivity equation is derived analytically. The equation for the water imbibition productivity considering the fracture network is obtained. A numerical model is constructed to verify the validity of the average capillary diffusivity coefficient and the results of the analytical model. By applying this method to a low permeability reservoir, after volume fracturing and waterflooding huff and puff, the relationship between the tenth year’s oil recovery and oil production rate and the length, width, and density of the fracture network is predicted, which gives an optimization of the field fracturing construction scale. The results show that the length and width of the fracture network should be no less than 50% of the well spacing and row spacing to obtain a reasonable production. Considering the fracturing technique and economic feasibility, the higher the density of the fracture network, the better the production obtained. Through hydraulic volume fracturing and waterflooding huff and puff, water imbibition is brought into full play and the 10 year oil recovery is increased by 6%–8% in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.