Abstract
The impingement of a gas jet on a liquid surface in the stable-state regime is analyzed theoretically. We consider the case of the perpendicular jet action. It is found that for describing analytically the processes occurring in this case, it is necessary to employ the balance equation for forces at the interface and not the balance equation for pressures at the lowest point of cavity, which was used in most available publications. Recommendations for experimental studies of a gas jet impinging on a liquid surface are formulated. We report on the results of experiments confirming the correctness of our theoretical analysis and making it possible to determine the empirical value of the shape factor. The experiments were carried out with air and epoxy resin. The cavity formed on the liquid surface had radius R0 = 1–8 mm and depth h = 0.2–12.5 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.