Abstract

Adsorption, dehydrogenation, and oxidation of methanol on Pt(111) in alkaline solutions has been examined from a fundamental mechanistic perspective, focusing on the role of adsorbate-adsorbate interactions and the effect of defects on reactivity. CO has been confirmed as the main poisoning species, affecting the rate of methanol dehydrogenation primarily through repulsive interactions with methanol dehydrogenation intermediates. At direct methanol fuel cell (DMFC)-relevant potentials, methanol oxidation occurs almost entirely through a CO intermediate, and the rate of CO oxidation is the main limiting factor in methanol oxidation. Small Pt island defects greatly enhance CO oxidation, though they are effective only when the CO coverage is 0.20 ML or higher. Large Pt islands enhance CO oxidation as well, but unlike small Pt islands, they also promote methanol dehydrogenation. Perturbations in electronic structure are responsible for the CO oxidation effect of defects, but the role of large Pt islands in promoting methanol dehydrogenation is primarily explained by surface geometric structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.