Abstract

Quantitative optical gas imaging (QOGI) system can rapidly quantify leaks detected by optical gas imaging (OGI) cameras across the oil and gas supply chain. A comprehensive evaluation of the QOGI system's quantification capability is needed for the successful adoption of the technology. This study conducted single-blind experiments to examine the quantification performance of the FLIR QL320 QOGI system under near-field conditions at a pseudo-realistic, outdoor, controlled testing facility that mimics upstream and midstream natural gas operations. The study completed 357 individual measurements across 26 controlled releases and 71 camera positions for release rates between 0.1 kg Ch4/h and 2.9 kg Ch4/h of compressed natural gas (which accounts for more than 90% of typical component-level leaks in several production facilities). The majority (75%) of measurements were within a quantification factor of 3 (quantification error of -67% to 200%) with individual errors between -90% and 831%, which reduced to -79% to +297% when the mean of estimates of the same controlled release from multiple camera positions was considered. Performance improved with increasing release rate, using clear sky as plume background, and at wind speeds ≤1 mph relative to other measurement conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.