Abstract
Methane bubble formation and transport is an important component of biogeochemical carbon cycling in aquatic sediments. To improve understanding of how sediment mechanical properties influence bubble growth and transport in freshwater sediments, a 20-day laboratory incubation experiment using homogenized natural clay and sand was performed. Methane bubble development at high resolution was characterized by μCT. Initially, capillary invasion by microbubbles (<0.1 mm) dominated bubble formation, with continued gas production (4 days for clay; 8 days for sand), large bubbles formed by deforming the surrounding sediment, leading to enhanced of macropore connectivity in both sediments. Growth of large bubbles (>1 mm) was possible in low shear yield strength sediments (<100 Pa), where excess gas pressure was sufficient to displace the sediment. Lower within the sand, higher shear yield strength (>360 Pa) resulted in a predominance of microbubbles where the required capillary entry pressure was low. Enhanced bubble migration, triggered by a controlled reduction in hydrostatic head, was observed throughout the clay column, while in sand mobile bubbles were restricted to the upper 6 cm. The observed macropore network was the dominant path for bubble movement and release in both sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.