Abstract
Metformin is an anti-diabetic drug known to have anticancer activity by inhibiting mechanistic target of rapamycin (mTOR); however, other molecular mechanisms may also be involved. In this study, we examined the effects of metformin on the activity of receptor tyrosine kinases of the TAM (TYRO3, AXL, and MERTK) family, which have important roles in leukemia cell growth. The results indicated that metformin suppressed the in vitro growth of four leukemia cell lines, OCI/AML2, OCI/AML3, THP-1, and K562, in a dose-dependent manner, which corresponded to the downregulation of the expression and phosphorylation of AXL and inhibition of its downstream targets such as phosphorylation of STAT3. Furthermore, metformin augmented the suppressive effects of a small-molecule AXL inhibitor TP-0903 on the growth of OCI/AML3 and K562 cells and prevented doxorubicin-induced AXL activation in K562 cells, which induces chemoresistance in leukemia cells, thus potentiating doxorubicin anti-proliferative effects. Given that metformin also downregulated expression of TYRO3 and phosphorylation of MERTK, these findings indicate that anti-leukemic effects exerted by metformin could be partly due to the inhibition of TAM kinases. Thus, metformin has a clinical potential for patients with leukemia cells positive for AXL and the other TAM proteins as well as activated mTOR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.