Abstract
The development of the ‘omics’ technologies such as transcriptomics, proteomics and metabolomics has made it possible to realize some of the goals of systems biology, where biological systems are interrogated at different levels of biochemical activity (such as gene expression, protein activity and/or metabolite concentration). Metabolomics deals with the metabolome that represents the complete set of small-molecule metabolites. Even though metabolomics can be thought of as a relatively young method, it is nevertheless a rapidly growing one that has the potential to reveal the molecular mechanism of certain diseases. H1 nuclear magnetic resonance (NMR) spectroscopy is commonly used in the metabolic profiling of biofluids as it has the potential to detect all proton-containing metabolites. Metabolites in biofluids are in dynamic equilibrium with those in cells and tissues, so their metabolic profile reflects changes in the state of an organism due to disease or environmental effects. ResultsMetFlexo is as an easy-to-use C package that allows the simulation of datasets of 1H-NMR spectra in order to test data analysis techniques, hypotheses and experimental designs. The idea is based on transforming statistical parameters of metabolites (shifts, couplings, concentrations and magnetic field) to an NMR spectrum using chemical-physics theory. Our method helps in the deconvolution of NMR spectra and in a better determination of metabolite concentrations, as these concentrations are key in detecting diseases and abnormalities. Unlike others, this program generates NMR spectrum of biofluids with no limit on magnetic field or pH. Thus, our approach is able to produce complex NMR profiles with flexible conditions. It is also simple to implement in C, requires small storage, is easy to compute and uses an independent platform. It will be available in R and MATLAB soon. The algorithm is freely available upon request to the corresponding author.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.