Abstract

Metasurfaces have recently emerged as an innovative approach to control light propagation with unprecedented capabilities. Different from previous work concentrating on steering far-field propagating waves, here we demonstrate that metallic metasurfaces can efficiently and effectively manipulate surface plasmons in the near-field regime. By engineering the dispersion of surface plasmons on a simple grating structure, we are able to realize normal, non-divergent as well as anomalous diffraction of surface plasmons. In particular, all-angle and broadband negative refraction of surface plasmons is achieved, largely attributed to the uniquely designed hyperbolic constant frequency contour of surface plasmons propagating along the metasurface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.