Abstract

The possible formation of two-dimensional (2D) magnetic biexcitons composed of two 2D magnetoexcitons with electrons and holes on the lowest Landau levels (LLLs) with opposite center-of-mass wave vectors k→ and −k→ and with antiparallel electric dipole moments perpendicular to the corresponding wave vectors was investigated. Two spinor structures of two electrons and of two holes were considered. In the singlet-singlet state the spins of two electrons as well as the effective spins of two holes create the combinations with the total spin S=0 and its projection on the magnetic field Sz=0. The triplet-triplet state corresponds to S=1 and Sz=0. Two orbital Gaussian variational wave functions depending on |k→| and describing the relative motion of two magnetoexcitons inside the molecule were used. Analytical calculations show that in the LLLs approximation the stable bound states of bimagnetoexcitons do not exist, but there is a metastable bound state with the orbital wave function, having the maximum on the in-plane ring for the triplet-triplet spin configuration. The metastable bound state has an energy activation barrier comparable with the magnetoexciton ionization potential and gives rise to the new luminescence band due to the metastable biexciton-para exciton conversion with the frequencies higher than those of the para magnetoexciton luminescence line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.