Abstract

We examine bootstrap percolation on a regular (b+1)-ary tree with initial law given by Bernoulli(p). The sites are updated according to the usual rule: a vacant site becomes occupied if it has at least theta occupied neighbors, occupied sites remain occupied forever. It is known that, when b>theta>1, the limiting density q=q(p) of occupied sites exhibits a jump at some p_t=p_t(b,theta) in (0,1) from q_t:=q(p_t) p_t. We investigate the metastable behavior associated with this transition. Explicitly, we pick p=p_t+h with h>0 and show that, as h decreases to 0, the system lingers around the critical state for time order h^{-1/2} and then passes to fully occupied state in time O(1). The law of the entire configuration observed when the occupation density is q in (q_t,1) converges, as h tends to 0, to a well-defined measure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.