Abstract

Abstract Bulk bodies of metastable body-centered-cubic (BCC) and face-centered-cubic (FCC) alloys of solid solutions in the iron (Fe)–copper (Cu) system were prepared by mechanical alloying (MA) and shock compression. The X-ray diffraction pattern of the BCC structure was obtained for the MA-treated powder in the Fe–Cu system with a Cu content of less than about 30 mol%, and those of FCC structure were obtained for the MA-treated powders in Fe–Cu systems with a Cu content of larger than about 30 mol%. The lattice parameters of both the BCC and FCC structures of the MA-treated powders were larger than those of pure Fe and pure Cu, respectively. No large crack could be observed in shock-consolidated bulk bodies, and the cross sections of the bulk bodies showed a metallic gloss. The X-ray diffraction patterns of both types of shock-consolidated bulk bodies formed in a specific low pressure range did not change significantly from those of the MA-treated powders, which indicated that the metastable phases were successfully consolidated by shock compression. Above a driving shock pressure of 13.0 GPa in brass capsule, the recovered specimens of the BCC structure in the Fe–Cu system (Fe:Cu=80:20 in mol%) began to decompose to Fe and Cu, while the recovered specimens of the FCC structure in the Fe–Cu system (Fe:Cu=50:50 in mol%) did not decompose up to a driving shock pressure of 14.9 GPa. It was confirmed by Electron Probe Micro Analysis (EPMA) that Fe and Cu dispersed well at the submicron level in the shock-consolidated bulk bodies. The Vickers hardnesses of the bulk bodies were much higher than those of pure Fe and Cu polycrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.