Abstract
It has been observed (Evans in Braz J Phys 30:42–57, 2000; Jeon et al. in Ann Probab 28:1162–1194, 2000) that some zero-range processes exhibit condensation, a macroscopic fraction of particles concentrates on one single site. We examined in (Beltrán and Landim in Probab Theory Relat Fields 152:781–807, 2012) the asymptotic evolution of the condensate in the case where the dynamics is reversible, the number of sites is fixed, and the total number of particles diverges. We proved in that paper that in an appropriate time-scale the condensate evolves according to a symmetric random walk whose transition rates are proportional to the capacities of the underlying random walk. In this article, we extend this result to the condensing totally asymmetric zero-range process, a non-reversible dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.