Abstract
The movement of carbon in subduction zones plays a crucial role in regulating the global carbon cycle, controlling Earth's climate, and maintaining its habitability. Recent work suggests that only a fraction of the carbon released from subducting slabs at sub-arc depths is ultimately released from volcanic arcs, necessitating the existence of hidden carbon reservoirs within the slab-to-arc pathways. However, the precise location of these reservoirs remains enigmatic. Slab fluid serves as the primary medium for carbon transport in subduction zones; thus, a comprehensive understanding of fluid-rock interaction during slab fluid migration is essential for reconciling the carbon flux imbalance between the slab and the arc. In this study, we explore rock carbonation along a fluid conduit in the Southwestern Tianshan HP metamorphic belt in northwest China. Field evidence and petrologic observation reveal significant carbonation of a siliciclastic metasediment at its contact with a high-pressure garnet-bearing calcite (formerly aragonite) vein. We find that rock carbonation (by progressive Fe-bearing magnesite, dolomite, then aragonite precipitation) occurred when slab-derived carbonic fluids migrated through the metasedimentary sequence at approximately 80 km depth. Furthermore, modeling demonstrates that the metasedimentary layer atop the slab has the capacity to sequester 20%–50% of the fluid carbon from the ascending slab devolatilization flux. We propose that the metasedimentary veneer at the plate interface functions as a “carbon filter”, hindering the transfer of carbon from the slab to the arc and helping to reconcile the carbon flux imbalance between the amount released by the slab and that emitted by the arc. This study also provides insights into decarbonation efficiency and mechanisms, carbon-transfer pathways, and temporal aspects of the subduction zone carbon cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.