Abstract
It has been confirmed that metallothioneins play an important role in the accumulation of cadmium (Cd) in the digestive gland cells of mussels (Mytilus galloprovincialis Lam.). The content of Cd in the tissue of mussels exposed for 9 d to the metal (estimated dosage of 180 μg Cd mussel-1 d-1) was 66.2 ppm. This value is about the same as the metal content found in the digestive gland of Cd-exposed mussels kept in clean water for a recovery period of 28 d. At the end of the recovery period, however, the Cd bound to thionein had increased by approximately 250%. Our data demonstrate that the stability of lysosomes, a biological parameter adopted as a cellular stress index, is extremely low in mussels exposed to Cd for 9 d, but returns to control values in the digestive gland cells of mussels allowed to recover for 28 d in uncontaminated sea water. At this point most of the Cd present in the cytosol is bound to thionein. These data demonstrate the importance of metallothionein induction in the reduction of the cytotoxic effects exerted by high levels of Cd accumulation. The results of tests designed to clarify the reasons for the long biological half-life of Cd demonstrated that, in the digestive gland of mussels, the lysosomes are not able to eliminate Cd either bound to insoluble thionein polymers or to lipid peroxidation products such as lysosomal lipofuscin, both of which are apparently involved in the elimination of copper. The absence of these two mechanisms of metal sequestration and elimination via excretion of residual bodies (tertiary lysosomes) is in agreement with the persistence of cadmium in the digestive gland of mussels. Finally, the results also demonstrate that simultaneous exposure of mussels to Cd and phenanthrene, an established lysosomal membrane destabilizer, did not significantly alter the accumulation of Cd or the kinetics of the metal in mussels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.