Abstract

Cytoskeletal rearrangement during axon growth is mediated by guidance receptors and their ligands which act either as repellent, attractant or both. Regulation of the actin cytoskeleton is disturbed in Spinal Muscular Atrophy (SMA), a devastating neurodegenerative disease affecting mainly motoneurons, but receptor-ligand interactions leading to the dysregulation causing SMA are poorly understood. In this study, we analysed the role of the guidance receptor PlexinD1 in SMA pathogenesis. We showed that PlexinD1 is cleaved by metalloproteases in SMA and that this cleavage switches its function from an attractant to repellent. Moreover, we found that the PlexinD1 cleavage product binds to actin rods, pathological aggregate-like structures which had so far been described for age-related neurodegenerative diseases. Our data suggest a novel disease mechanism for SMA involving formation of actin rods as a molecular sink for a cleaved PlexinD1 fragment leading to dysregulation of receptor signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.