Abstract
The metallic superlens of a single negative permittivity is easier to implement than the double negative material superlens and can be applied to nano-scale resolution lithography. The metallic superlens amplifies by the resonance the surface plasmon polariton (SPP) waves, which carry the sub-wavelength detail information of the object. However, the excitations of the long- and the short-range SPP modes of the metal slab lead to two peaks in the transfer function which enhance the spatial frequencies disproportionally, resulting in strong sidelobes in the image. Conventionally the metallic superlens is designed by trials without rules to follow. We propose to design the metallic superlens by approaching the cutoff condition of the long-range SPP mode in order to flatten the transfer function and to improve the imaging performance significantly. Design experiments of Al and Ag superlens with both the transfer-matrix approach and the numerical Finite Difference in Time Domain method are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.