Abstract

We show that an interplay of double exchange and impurity randomness can explain the competition between metal-ferromagnetic and insulating charge ordered states in doped manganites. The double exchange is simplified in the Ising type, whereas the randomness is modeled by the Falicov-Kimball binary distribution. The combined model is considered in a framework of dynamical mean-field theory. Using the Kubo-Greenwood formalism, the transport coefficients are explicitly expressed in terms of single particle spectral functions. Dividing the system into two sublattices we have pointed out a direct calculation to the checkerboard charge order parameter and the magnetizations. Numerical results show us that the checkerboard charge order can settle inside the ferromagnetic state at low temperature. An insulator-metal transition is also found at the point of the checkerboard charge order-ferromagnetic transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.