Abstract

Phosphorus-rich compounds have emerged as a promising class of energy storage and conversion materials due to their interesting structures and electrochemical properties. Herein, we propose that a metallic CrP2 monolayer, isomorphic to 1H-phase MoS2, is a good prospect as an anode for K-ion batteries and a catalyst for hydrogen evolution through first-principles calculations. The CrP2 monolayer demonstrates not only a desirable high K storage capacity (940 mA h g-1) but also a low K-ion diffusion barrier (0.10 eV) and average open circuit voltage (0.40 V). On the other hand, its Gibbs free energy (0.02 eV)/active site density is superior/comparable to that of commercial Pt, resulting from the contribution of the lone pair electrons of the P atom. Its high structural stability and intrinsic metallicity can ensure high safety and performance during the cyclic process. These interesting properties make the CrP2 monolayer a promising multifunctional material for energy storage and conversion devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.