Abstract

Reduction of 4-nitrophenol (4-NP) with NaBH4 in the aqueous medium is a kinetically inert reaction, and generally the reaction occurs in the presence of metal/metal oxide nanoparticles. In the present study, the reduction of 4-nitrophenol (4-NP) has been carried out photocatalytically using the visible irradiation under a metal-free (eco-friendly) condition. By systematic screening, Eosin Y loaded resin is identified to be efficient in the reduction of 4-NP under the visible light. The effectiveness of the catalytic process depends upon the adsorption and the electron transfer. The adsorption favours the reaction molecules to come closer on the resin surface, and then reduction occurs by transfer of electrons. Gradual decrease in the absorbance at 400nm confirms the decrease in concentration of the 4-NP. Simultaneously, there is an increase in absorbance at 300nm infers the formation of 4-aminophenol (4-AP) during the photolysis. Results obtained from the irradiation on–off experiment suggests that the visible light irradiation is essential for the above processes, and also it indicates the sensitivity of the photocatalyst. The optimized reaction condition had been arrived from the results obtained after a series of experiments, including variation of catalytic dose, concentrations of 4-NP and the reducing agent (NaBH4). The rate of the reaction is found to be pseudo first order kinetics, and the rate constant (k) value is 6.90×10−2min−1, under the experimental condition. From the control experiments, it is identified that the photocatalyst is primarily serving as an electron carrier in the reaction mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.