Abstract

Covalent organic frameworks (COFs) have emerged as a fascinating crystalline porous material and are widely used in the field of catalysis. However, developing simple approaches to fabricate conjugated COFs with specific functional groups remains a significant challenge. In this study, the construction of defective COF-LZU1 with Lewis acid sites embedded into the frameworks is fulfilled by a facile solvent-assisted ligand exchange method. A monodentate ligand, protocatechualdehyde, is successfully introduced into the skeleton of COF-LZU1, which endows the defects in the structure of COF-LZU1 via replacement of the original coordinated benzene-1,3,5-tricarbaldehyde ligand. As-synthesized defective COF-LZU1 decorated with protocatechualdehyde is rich of free hydroxy groups for chelating with active metal ions. Specifically, after combining with Fe3+ , the defective COF-LZU1 shows excellent activity in catalytic alcoholysis of epoxides under mild conditions. The method reported here will open up the opportunity to incorporate different functional groups into COFs and enrich the strategies for creating new types of porous catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.