Abstract

Electrochemical conversion of CO2 to chemicals is an appealing route to reduce carbon emission and achieve carbon neutrality. Indium (In) is a promising electrocatalyst for CO2-to-formate conversion due to its high selectivity to formate, but is still hindered by low current density and poor stability. In this work, we propose the construction of In nanotubes from MIL-68(In) metal-organic framework nanotubes by a electrolytic route, which is simple, rapid and low-cost. Benefiting from the nanotube morphology and abundant unsaturated coordination In sites, the as-synthesized In nanotubes exhibit high performance for the electrochemical CO2-to-formate conversion. The formate Faradaic efficiency can reach 98.6% at −1.2 V versus reversible hydrogen electrode by using 0.5 M KHCO3 aqueous solution as electrolyte in H-cell, with current density of 24.8 mA cm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.