Abstract

Drug delivery systems (DDSs) that are derived from biocompatible carriers are attractive platforms for sustained release of drugs. In particular, sustained and controlled release of poorly soluble BCS (Biopharmaceutics Classification System) class IV drugs is important and this requires the development of new DDSs. In this work, we exploit two porous metal-organic frameworks (MOFs) MIL-100(Fe) and MIL-53(Fe) as carriers/DDSs for the release of two BCS class IV drugs hydrochlorothiazide (HCT) and dapsone (DAP). The chosen MOFs are known to possess good physicochemical stability and we realized high drug loading capacity that is attributed to the high porosity of the MOFs. The drug-encapsulated MOFs were characterized thoroughly and our results show ∼23.1% loading of HCT in MIL-100(Fe) and ∼27.6% loading of DAP in MIL-Fe(53), respectively. The release study of these drugs was carried out under simulated physiological conditions that shows sustained release of the drug molecules from the MOFs up to 72 h. Cell viability studies through MTT assays show insignificant cytotoxicity signalling biocompatibility of the proposed DDSs. Our investigations suggest MIL-100(Fe) and MIL-53(Fe) are potential DDSs for enhancing the performance of poorly soluble drugs HCT and DAP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.