Abstract
Zirconium-based metal−organic frameworks, namely Zr-based MOF, was employed as adsorbent material in the miniaturized solid phase extraction of organic mercury compounds in food prior to capillary electrophoresis-diode array detector analysis. The synthesized adsorbent was characterized by different spectroscopic techniques. Parameters influencing the extraction and complexation of methylmercury chloride, ethylmercury chloride and phenylmercury chloride such as type of eluent solvent, type and amount of adsorbent were investigated. In addition, linear ranges contained 2.00–300.00 ng mL−1 for MeHg+, 5.00–500.00 ng mL−1 for EtHg+ and PhHg+, and the established method presented good linearity (R2 ≥ 0.998). Under the optimized experimental conditions, the ranges of detection limit and quantitation limit were 0.022–0.067 ng mL−1 and 0.073–0.220 ng mL−1, respectively. The relative standard deviations of intra- and inter-day analysis were less than 3.2 and 3.1%, respectively. Trueness of the present method was successfully accomplished by means of the recovery assays (81.4–98.5%) in the blank samples with two concentration levels. The repeatability %RSD of the method was lower than 2.7%. Overall, the developed approach proved to have the latent capability to be utilized in routine analysis of organic mercury compounds in fish and Dendrobium officinale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.