Abstract
Polydopamine (PDA)-derived melanin-like materials exhibit significant photothermal conversion owing to their broad-spectrum light absorption. However, their low near-infrared (NIR) absorption and inadequate hydrophilicity compromise their utilization of solar energy. Herein, we developed metal-loaded poly(norepinephrine) nanoparticles (PNE NPs) by predoping metal ions (Fe3+, Mn3+, Co2+, Ca2+, Ga3+, and Mg2+) with norepinephrine, a neuron-derived biomimetic molecule, to address the limitations of PDA. The chelation between catechol and metal ions induces a ligand-to-metal charge transfer (LMCT) through the formation of donor-acceptor pairs, modulating the light absorption behavior and reducing the band gap. Under 1 sun illumination, the Fe-loaded PNE coated wood evaporator achieved a high seawater evaporation rate and efficiency of 1.75 kg m-2 h-1 and 92.4%, respectively, owing to the superior hydrophilicity and photothermal performance of PNE. Therefore, this study offers a comprehensive exploration of the role of metal ions in enhancing the photothermal properties of synthetic melanins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.