Abstract

In order to take advantage of geometrical convergence, we investigated a method, where a beryllium liner drives a cylindrical shockless compression in a cryogenic deuterium fill. The metal liner acts as a current carrier as well as a pressure boundary to the fill. The required driving pressure was obtained through a fictitious flow (FF) simulation [D S Clark and M Tabak 2007 Nucl. Fusion 47 1147]. A current model that can recreate the FF compression inside the liner by shaping the current pulse, is then introduced. This method also allows efficient compression of hydrogen at low entropy, enabling the recreation of conditions present in the interior of gas giants and potentially the observation of a transition into a metallic state. Our two-dimensional simulations show that thick liners remain robust to magneto-Rayleigh-Taylor instability growth, suggesting that cylindrical isentropic ramp compression is a promising scheme for extending deuterium's experimentally measured equation of state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.