Abstract

Arginase is a bimetallic enzyme that utilizes mainly Mn2+ or Co2+ for catalytic function. In human homolog, the substitution of Mn2+ with Co2+ significantly reduces the Km value without affecting the kcat. However, in the Helicobacter pylori counterpart (important for pathogenesis), the kcat increases nearly 4-fold with Co2+ ions both in the recombinant holoenzyme and arginase isolated from H. pylori grown with Co2+ or Mn2+. This suggests that the active site of arginase in the two homologs is modulated differently by these two metal ions. To investigate the underlying mechanism for metal-induced difference in catalytic activity in the H. pylori enzyme, we used biochemical, biophysical and microsecond molecular dynamics simulations studies. The study shows that the difference in binding affinity of Co2+ and Mn2+ ions with the protein is linked to a different positioning of a loop (-122HTAYDSDSKHIHG134-) that contains a conserved catalytic His133. Consequently, the proximity of His133 and conserved Glu281 is varied. We found that the Glu281-His133 interaction is crucial for catalytic function and was previously unexplored in other homologs. We suggest that the proximity difference between these two residues in the Co2+- and Mn2+-proteins alters the proportion of protonated His133 via variation in its pKa. This affects the efficiency of proton transfer - an essential step of l-arginine hydrolysis reaction catalyzed by arginase and thus activity. Unlike in human arginase, the flexibility of the above segment observed in H. pylori homolog suggests that this region in the H. pylori enzyme may be explored to design its specific inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.