Abstract
Cyclobutane malonoyl peroxide (7), prepared in a single step from the commercially available diacid 6, is an effective reagent for the dihydroxylation of alkenes. Reaction of a chloroform solution of 7 with an alkene in the presence of 1 equiv of water at 40 °C followed by alkaline hydrolysis leads to the corresponding diol (30-84%). With 1,2-disubstituted alkenes, the reaction proceeds with syn-selectivity (3:1 → 50:1). A mechanism consistent with experimental findings is proposed, which is supported by deuterium and oxygen labeling studies and explains the stereoselectivity observed. Alternative reaction pathways that are dependent on the structure of the starting alkene are also described leading to the synthesis of allylic alcohols and γ-lactones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.