Abstract

We have applied the BOC-MP method to theoretically analyze the metal effects in the Fischer-Tropsch (FT) synthesis by calculating the energetics of conceivable elementary steps (the relevant heats of chemisorption and the reaction activation barriers) during CO hydrogenation over the periodic series Fe(110), Ni(111), Pt(111), Cu(111). The basic steps such as dissociation of CO, hydrogenation of carbidic carbon, C-C chain growth by insertion of CH2 versus CO into the metal-alkyl bonds, and chain termination leading to hydrocarbons (alkanes versus α-olefins) or oxygenates are discussed in detail. It is shown that the periodic trends in the ability of metal surfaces to dissociate chemical bonds and those to recombine the bonds are always opposite. In particular, we argue that metallic Fe is necessary to produce the abundance of carbidic carbon from CO but the synthesis of hydrocarbons and oxygenates can effectively proceed only on carbided Fe surfaces which resemble the less active metals such as Pt. More specifically, we project that the C-C chain growth should occur predominantly via CH2 insertion into the metal-alkyl bond and the primary FT products should be α-olefins. These and other model projections are in agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.