Abstract

Abstract Periodic nanostructures are one of the main building blocks in modern nanooptics. They are used for constructing photonic crystals and metamaterials and provide optical properties that can be changed by adjusting the geometrical parameters of the structures. In this paper the optical properties of a photonic crystal slab with a 2D superlattice are discussed. The structure consists of a gold layer with a finite periodic pattern of air holes that is itself repeated periodically with a larger superperiod. We propose simplified 1D and 2D models to understand the physical nature of Wood's anomalies in the optical spectra of the investigated structure. The latter are attributed to the Rayleigh anomalies, surface plasmon Bragg resonances and the hole-localized plasmons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.