Abstract

Silicon is a worthy substitute anode material for lithium-ion batteries because it offers high theoretical capacity and low working potentials vs. Li+/Li. However, immense volume changes and the low intrinsic conductivity of Si hampers its practical applications. In this study, nano/micro silicon particles are achieved by ball milling silicon mesh powder as a scalable process. Subsequent metal (Cu/Fe/Mn) doping into nano/micro silicon by low-temperature annealing, followed by high-temperature annealing with graphite, gives a metal-doped silicon/graphite composite. The obtained composites were studied as anodes for Li-ion batteries, and they delivered high reversible capacities of more than 1000 mAh g−1 with improved Li+ diffusion properties. The full cells from these composite anodes vs. LiCoO2 cathodes delivered suitable energy densities for Li+ storage applications. The enhanced electrochemical properties are accredited to the synergistic effect of metal doping and graphite addition to silicon and exhibit potential for suitable Li+ energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.