Abstract

Direct imaging of single molecules has to date been primarily achieved using scanning probe microscopy, with limited success using transmission electron microscopy due to electron beam damage and low contrast from the light elements that make up the majority of molecules. Here, we show single complex molecule interactions can be imaged using annular dark field scanning TEM (ADF-STEM) by inserting heavy metal markers of Pt atoms and detecting their positions. Using the high angle ADF-STEM Z1.7 contrast, combined with graphene as an electron transparent support, we track the 2D monolayer self-assembly of solution-deposited individual linear porphyrin hexamer (Pt-L6) molecules and reveal preferential alignment along the graphene zigzag direction. The epitaxial interactions between graphene and Pt-L6 drive a reduction in the interporphyrin distance to allow perfect commensuration with the graphene. These results demonstrate how single metal atom markers in complex molecules can be used to study large scale packing and chain bending at the single molecule level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.