Abstract

This study proposed a metal artifact reduction (MAR) method based on noncoplanar scanning for cone beam computed tomography (CBCT) imaging. Cylindrical aluminum and stainless steel bars were inserted into a phantom for cross-sectional and sagittal CBCT scanning. The metal bars were removed from scanning to obtain real CBCT images without metal artifacts. Corrected CBCT images were acquired after the artifact reduction of cross-sectional and sagittal images. Real CBCT images were used as the criteria, and the computed tomography value deviations of the original cross-sectional, sagittal, linear interpolation MAR (LIMAR), normalized MAR (NMAR), beam hardening correction (BHC) and proposed method were calculated. Most metal artifacts in the original image are removed in the corrected image, and thus, image quality is remarkably improved. The root mean square deviations of the original cross-sectional, sagittal, LIMAR, NMAR,BHC and proposed method are 122, 116, 90, 103, 92 and 85 HU, respectively, whereas their mean absolute deviations are 71, 73, 57, 55, 58 and 51 HU, respectively. The CT value deviation of the proposed method is the minimum. Conclusion: The proposed MAR method based on noncoplanar scanning can effectively reduce metal artifacts and improve CBCT image quality.

Highlights

  • Computer topography (CT), which is extensively applied to radiodiagnosis and radiotherapy, exerts an important effect on modern medicine

  • Two sides of the phantom are displayed in the two cone beam CT (CBCT) images, and they contain strip-shaped artifacts that pass through the high-density metal bars

  • Fig. 3 shows the CT image obtained through cross-sectional scanning, which contains serious metal artifacts

Read more

Summary

Introduction

Computer topography (CT), which is extensively applied to radiodiagnosis and radiotherapy, exerts an important effect on modern medicine. Cross-sectional and sagittal scanning were conducted via CBCT to correct metal artifacts in a phantom. Two sides of the phantom are displayed in the two CBCT images, and they contain strip-shaped artifacts that pass through the high-density metal bars.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.