Abstract
Accurate detection of neuro-psychological disorders such as Attention Deficit Hyperactivity Disorder (ADHD) using resting state functional Magnetic Resonance Imaging (rs-fMRI) is challenging due to high dimensionality of input features, low inter-class separability, small sample size and high intra-class variability. For automatic diagnosis of ADHD and autism, spatial transformation methods have gained significance and have achieved improved classification performance. However, they are not reliable due to lack of generalization in dataset like ADHD with high variance and small sample size. Therefore, in this paper, we present a Metaheuristic Spatial Transformation (MST) approach to convert the spatial filter design problem into a constraint optimization problem, and obtain the solution using a hybrid genetic algorithm. Highly separable features obtained from the MST along with meta-cognitive radial basis function based classifier are utilized to accurately classify ADHD. The performance was evaluated using the ADHD200 consortium dataset using a ten fold cross validation. The results indicate that the MST based classifier produces state of the art classification accuracy of 72.10% (1.71% improvement over previous transformation based methods). Moreover, using MST based classifier the training and testing specificity increased significantly over previous methods in literature. These results clearly indicate that MST enables the determination of the highly discriminant transformation in dataset with high variability, small sample size and large number of features. Further, the performance on the ADHD200 dataset shows that MST based classifier can be reliably used for the accurate diagnosis of ADHD using rs-fMRI.Clinical relevance- Metaheuristic Spatial Transformation (MST) enables reliable and accurate detection of neuropsychological disorders like ADHD from rs-fMRI data characterized by high variability, small sample size and large number of features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.