Abstract

An efficient charging time forecasting reduces the travel disruption that drivers experience as a result of charging behavior. Despite the machine learning algorithm’s success in forecasting future outcomes in a range of applications (travel industry), estimating the charging time of an electric vehicle (EV) is relatively novel. It can help the end consumer plan their trip based on the estimation data and, hence, reduce the waste of electricity through idle charging. This increases the sustainability factor of the electric charging station. This necessitates further research into the machine learning algorithm’s ability to predict EV charging time. Foreign object recognition is an essential auxiliary function to improve the security and dependability of wireless charging for electric vehicles. A comparable model is used to create the object detection circuit in this instance. Within this research, the ensemble machine learning methods employed to estimate EV charging times included random forest, CatBoost, and XGBoost, with parameters being improved through the metaheuristic Ant Colony Optimization algorithm to obtain higher accuracy and robustness. It was demonstrated that the proposed Ensemble Machine Learning Ant Colony Optimization (EML_ACO) algorithm achieved 20.5% of R2, 19.3% of MAE, 21% of RMSE, and 23% of MAPE in the training process. In comparison, it achieves 12.4% of R2, 13.3% of MAE, 21% of RMSE, and 12.4% of MAPE during testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.