Metagenomic insights into the influence of soil microbiome on greenhouse gas emissions from paddy fields under varying irrigation and fertilisation regimes.
Metagenomic insights into the influence of soil microbiome on greenhouse gas emissions from paddy fields under varying irrigation and fertilisation regimes.
336
- 10.1016/j.agee.2018.05.028
- May 31, 2018
- Agriculture, Ecosystems & Environment
75
- 10.1038/s41558-024-02007-0
- May 23, 2024
- Nature Climate Change
27
- 10.1016/j.biortech.2021.126002
- Sep 22, 2021
- Bioresource Technology
88
- 10.1016/j.envint.2019.05.058
- May 30, 2019
- Environment International
206
- 10.1016/j.soilbio.2015.08.034
- Sep 12, 2015
- Soil Biology and Biochemistry
13
- 10.1007/s11783-018-1067-2
- Aug 1, 2018
- Frontiers of Environmental Science & Engineering
129
- 10.1111/gcb.16205
- May 2, 2022
- Global Change Biology
15
- 10.1016/j.geoderma.2023.116450
- Mar 28, 2023
- Geoderma
148
- 10.1038/s41467-022-29161-3
- Mar 17, 2022
- Nature Communications
244
- 10.1016/j.agee.2015.02.008
- Feb 27, 2015
- Agriculture, Ecosystems & Environment
- Research Article
2
- 10.55493/5049.v9i2.4640
- Oct 21, 2022
- Energy Economics Letters
This study investigates the effect of energy consumption on greenhouse gas (GHG) emissions in 33 African countries from 1995–2017. It contributes to the literature by investigating the effect of disaggregated measures of energy consumption (coal, oil and other liquids, renewable energy, and electricity) on GHG emissions (CO2, N2O, CH4, and total GHG emissions) in Africa and identifies the transmission channels through which energy consumption affects GHG emissions. The system GMM is used in the study as it accounts for possible endogeneity and the potential correlation between the error term and the country fixed effects. The results show that coal consumption significantly increases CO2, CH4, and total GHG emissions and reduces N2O emissions. Oil consumption increases CO2 and total GHG emissions but reduces N2O and CH4 emissions. Renewable energy consumption reduces CO2 and CH4 emissions but increases N2O emissions. Finally, electricity consumption promotes CO2, N2O, CH4 and total GHG emissions in Africa. Further analyses show that foreign trade and economic growth are the channels through which oil consumption increases GHG emissions. The adverse effect of electricity is through urbanization. Renewable consumption could decrease GHG emissions through sustainable urbanization and trade policies. The findings suggest that countries should gradually reduce coal consumption and encourage renewable energy consumption, which has the lowest impact on the environment.
- Research Article
2
- 10.13227/j.hjkx.202107260
- Apr 8, 2022
- Huan jing ke xue= Huanjing kexue
Methane (CH4) and nitrous oxide (N2O) are two extremely important greenhouse gases in the atmosphere. Nitrogen fertilizer is an important factor affecting CH4 and N2O emissions in rice fields. Rational application of nitrogen fertilizer can not only promote high yields of rice but also reduce greenhouse gas emissions. Existing studies have shown that nitrogen reduction and optimal application can effectively improve the nitrogen use efficiency of rice on the basis of ensuring the yield and reduce the loss of N2O caused by nitrification and denitrification of excessive nitrogen in soil. Fertilization times and fertilizer types have significant effects on CH4 and N2O emissions in paddy fields. In this study, a field experiment was conducted for two consecutive years (2019-2020) to study the effects of fertilizer application on CH4 and N2O emissions from rice fields by setting up four treatments consisting of no fertilizer (CK), customary fertilizer application by farmers (CF), twice fertilizer (TT), and 20% replacement of chemical fertilizer by organic fertilizer (OF) using static chamber-gas chromatography. Additionally, the effect of integrating rice yield and integrated global warming potential (GWP) on the greenhouse gas emission intensity (GHGI) per unit of rice yield was analyzed to explore fertilizer application for yield increase and emission reduction in a typical rice growing area in the middle and lower reaches of Yangtze River. The results showed that:① compared with those of CK, the fertilizer treatments reduced CH4 emissions by 14.6%-25.1% and increased N2O emissions by 610%-1836% in both years; ② compared with those of CF, both the TT and OF treatments showed a trend of increasing CH4 emissions and reducing N2O emissions. CH4 emissions increased by 1.8% (P>0.05) and 14.0% (P<0.05), respectively. The annual average of N2O emissions decreased by 63.3% (P<0.05) and 49.2% (P<0.05) in both the TT and OF treatments, respectively. ③ Compared with that of CK, both fertilizer applications increased rice yield and reduced GHGI; compared with that of CF, the OF and TT treatments increased the average annual rice yield by 17.0% and 10.7%, respectively, and reduced GHGI by 6.8% and 13.7%, respectively. The OF treatment had a better yield increase than that of the TT treatment, and the TT treatment had a slightly better emission reduction than that of the OF treatment. In terms of combined yield and GHG emission reduction, both twice fertilizer (TT) and 20% replacement of chemical fertilizer by organic fertilizer (OF) could reduce the intensity of GHG emission per unit of rice yield and achieve yield increase and emission reduction while ensuring rice yield.
- Research Article
2
- 10.1016/j.fcr.2024.109409
- May 1, 2024
- Field Crops Research
Straw management adopted by large farms sustains grain yield but mitigates greenhouse gas emissions
- Research Article
84
- 10.1016/j.eja.2014.11.005
- Nov 27, 2014
- European Journal of Agronomy
Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–wheat cropping system
- Research Article
71
- 10.1051/agro/2009031
- Apr 1, 2010
- Agronomy for Sustainable Development
Dairy production systems represent a significant source of air pollutants such as greenhouse gases (GHG), that increase global warming, and ammonia (NH3), that leads to eutrophication and acidification of natural ecosystems. Greenhouse gases and ammonia are emitted both by conventional and organic dairy systems. Several studies have already been conducted to design practices that reduce greenhouse gas and ammonia emissions from dairy systems. However, those studies did not consider options specifically applied to organic farming, as well as the multiple trade-offs occurring between these air pollutants. This article reviews agricultural practices that mitigate greenhouse gas and ammonia emissions. Those practices can be applied to the most common organic dairy systems in northern Europe such as organic mixed crop-dairy systems. The following major points of mitigation options for animal production, crop production and grasslands are discussed. Animal production: the most promising options for reducing greenhouse gas emissions at the livestock management level involve either the improvement of animal production through dietary changes and genetic improvement or the reduction of the replacement rate. The control of the protein intake of animals is an effective means to reduce gaseous emissions of nitrogen, but it is difficult to implement in organic dairy farming systems. Considering the manure handling chain, mitigation options involve housing, storage and application. For housing, an increase in the amounts of straw used for bedding reduces NH3 emissions, while the limitation of CH4 emissions from deep litter is achieved by avoiding anaerobic conditions. During the storage of solid manure, composting could be an efficient mitigation option, depending on its management. Addition of straw to solid manure was shown to reduce CH4 and N2O emissions from the manure heaps. During the storage of liquid manure, emptying the slurry store before late spring is an efficient mitigation option to limit both CH4 and NH3 emissions. Addition of a wooden cover also reduces these emissions more efficiently than a natural surface crust alone, but may increase N2O emissions. Anaerobic digestion is the most promising way to reduce the overall greenhouse gas emissions from storage and land spreading, without increasing NH3 emissions. At the application stage, NH3 emissions may be reduced by spreading manure during the coolest part of the day, incorporating it quickly and in narrow bands. Crop production: the mitigation options for crop production focus on limiting CO2 and N2O emissions. The introduction of perennial crops or temporary leys of longer duration are promising options to limit CO2 emissions by storing carbon in plants or soils. Reduced tillage or no tillage as well as the incorporation of crop residues also favour carbon sequestration in soils, but these practices may enhance N2O emissions. Besides, the improvement of crop N-use efficiency through effective management of manure and slurry, by growing catch crops or by delaying the ploughing of leys, is of prime importance to reduce N2O emissions. Grassland: concerning grassland and grazing management, permanent conversion from arable to grassland provides high soil carbon sequestration while increasing or decreasing the livestock density seems not to be an appropriate mitigation option. From the study of the multiple interrelations between gases and between farm compartments, the following mitigation options are advised for organic mixed crop-dairy systems: (1) actions for increasing energy efficiency or fuel savings because they are beneficial in any case, (2) techniques improving efficiency of N management at field and farm levels because they affect not only N2O and NH3 emissions, but also nitrate leaching, and (3) biogas production through anaerobic digestion of manure because it is a promising efficient method to mitigate greenhouse gas emissions, even if the profitability of this expensive investment needs to be carefully studied. Finally, the way the farmer implements the mitigation options, i.e. his practices, will be a determining factor in the reduction of greenhouse gas and NH3 emissions.
- Research Article
41
- 10.1371/journal.pone.0253755
- Jun 30, 2021
- PLOS ONE
The study is focused on impact of manure application, rice varieties and water management on greenhouse gas (GHG) emissions from paddy rice soil in pot experiment. The objectives of this study were a) to assess the effect of different types of manure amendments and rice varieties on greenhouse gas emissions and b) to determine the optimum manure application rate to increase rice yield while mitigating GHG emissions under alternate wetting and drying irrigation in paddy rice production. The first pot experiment was conducted at the Department of Agronomy, Yezin Agricultural University, Myanmar, in the wet season from June to October 2016. Two different organic manures (compost and cow dung) and control (no manure), and two rice varieties; Manawthukha (135 days) and IR-50 (115 days), were tested. The results showed that cumulative CH4 emission from Manawthukha (1.084 g CH4 kg-1 soil) was significantly higher than that from IR-50 (0.683 g CH4 kg-1 soil) (P<0.0046) with yield increase (P<0.0164) because of the longer growth duration of the former. In contrast, higher cumulative nitrous oxide emissions were found for IR-50 (2.644 mg N2O kg-1 soil) than for Manawthukha (2.585 mg N2O kg-1 soil). However, IR-50 showed less global warming potential (GWP) than Manawthukha (P<0.0050). Although not significant, the numerically lowest CH4 and N2O emissions were observed in the cow dung manure treatment (0.808 g CH4 kg-1 soil, 2.135 mg N2O kg-1 soil) compared to those of the control and compost. To determine the effect of water management and organic manures on greenhouse gas emissions, second pot experiments were conducted in Madaya township during the dry and wet seasons from February to October 2017. Two water management practices {continuous flooding (CF) and alternate wetting and drying (AWD)} and four cow dung manure rates {(1) 0 (2) 2.5 t ha-1 (3) 5 t ha-1 (4) 7.5 t ha-1} were tested. The different cow dung manure rates did not significantly affect grain yield or greenhouse gas emissions in this experiment. Across the manure treatments, AWD irrigation significantly reduced CH4 emissions by 70% during the dry season and 66% during the wet season. Although a relative increase in N2O emissions under AWD was observed in both rice seasons, the global warming potential was significantly reduced in AWD compared to CF in both seasons (P<0.0002, P<0.0000) according to reduced emission in CH4. Therefore, AWD is the effective mitigation practice for reducing GWP without compromising rice yield while manure amendment had no significant effect on GHG emission from paddy rice field. Besides, AWD saved water about 10% in dry season and 19% in wet season.
- Research Article
1
- 10.1371/journal.pone.0253755.r006
- Jun 30, 2021
- PLoS ONE
The study is focused on impact of manure application, rice varieties and water management on greenhouse gas (GHG) emissions from paddy rice soil in pot experiment. The objectives of this study were a) to assess the effect of different types of manure amendments and rice varieties on greenhouse gas emissions and b) to determine the optimum manure application rate to increase rice yield while mitigating GHG emissions under alternate wetting and drying irrigation in paddy rice production. The first pot experiment was conducted at the Department of Agronomy, Yezin Agricultural University, Myanmar, in the wet season from June to October 2016. Two different organic manures (compost and cow dung) and control (no manure), and two rice varieties; Manawthukha (135 days) and IR-50 (115 days), were tested. The results showed that cumulative CH4 emission from Manawthukha (1.084 g CH4 kg-1 soil) was significantly higher than that from IR-50 (0.683 g CH4 kg-1 soil) (P<0.0046) with yield increase (P<0.0164) because of the longer growth duration of the former. In contrast, higher cumulative nitrous oxide emissions were found for IR-50 (2.644 mg N2O kg-1 soil) than for Manawthukha (2.585 mg N2O kg-1 soil). However, IR-50 showed less global warming potential (GWP) than Manawthukha (P<0.0050). Although not significant, the numerically lowest CH4 and N2O emissions were observed in the cow dung manure treatment (0.808 g CH4 kg-1 soil, 2.135 mg N2O kg-1 soil) compared to those of the control and compost. To determine the effect of water management and organic manures on greenhouse gas emissions, second pot experiments were conducted in Madaya township during the dry and wet seasons from February to October 2017. Two water management practices {continuous flooding (CF) and alternate wetting and drying (AWD)} and four cow dung manure rates {(1) 0 (2) 2.5 t ha-1 (3) 5 t ha-1 (4) 7.5 t ha-1} were tested. The different cow dung manure rates did not significantly affect grain yield or greenhouse gas emissions in this experiment. Across the manure treatments, AWD irrigation significantly reduced CH4 emissions by 70% during the dry season and 66% during the wet season. Although a relative increase in N2O emissions under AWD was observed in both rice seasons, the global warming potential was significantly reduced in AWD compared to CF in both seasons (P<0.0002, P<0.0000) according to reduced emission in CH4. Therefore, AWD is the effective mitigation practice for reducing GWP without compromising rice yield while manure amendment had no significant effect on GHG emission from paddy rice field. Besides, AWD saved water about 10% in dry season and 19% in wet season.
- Book Chapter
1
- 10.1007/978-94-007-0394-0_24
- Jan 1, 2011
Dairy production systems represent a significant source of air pollutants such as greenhouse gases (GHG), that increase global warming, and ammonia (NH3), that leads to eutrophication and acidification of natural ecosystems. Greenhouse gases and ammonia are emitted both by conventional and organic dairy systems. Several studies have already been conducted to design practices that reduce greenhouse gas and ammonia emissions from dairy systems. However, those studies did not consider options specifically applied to organic farming, as well as the multiple trade-offs occurring between these air pollutants. This article reviews agricultural practices that mitigate greenhouse gas and ammonia emissions. Those practices can be applied to the most common organic dairy systems in northern Europe such as organic mixed crop-dairy systems. The following major points of mitigation options for animal production, crop production and grasslands are discussed. Animal production: the most promising options for reducing greenhouse gas emissions at the livestock management level involve either the improvement of animal production through dietary changes and genetic improvement or the reduction of the replacement rate. The control of the protein intake of animals is an effective means to reduce gaseous emissions of nitrogen, but it is difficult to implement in organic dairy farming systems. Considering the manure handling chain, mitigation options involve housing, storage and application. For housing, an increase in the amounts of straw used for bedding reduces NH3 emissions, while the limitation of CH4 emissions from deep litter is achieved by avoiding anaerobic conditions. During the storage of solid manure, composting could be an efficient mitigation option, depending on its management. Addition of straw to solid manure was shown to reduce CH4 and N2O emissions from the manure heaps. During the storage of liquid manure, emptying the slurry store before late spring is an efficient mitigation option to limit both CH4 and NH3 emissions. Addition of a wooden cover also reduces these emissions more efficiently than a natural surface crust alone, but may increase N2O emissions. Anaerobic digestion is the most promising way to reduce the overall greenhouse gas emissions from storage and land spreading, without increasing NH3 emissions. At the application stage, NH3 emissions may be reduced by spreading manure during the coolest part of the day, incorporating it quickly and in narrow bands. Crop production: the mitigation options for crop production focus on limiting CO2 and N2O emissions. The introduction of perennial crops or temporary leys of longer duration are promising options to limit CO2 emissions by storing carbon in plants or soils. Reduced tillage or no tillage as well as the incorporation of crop residues also favour carbon sequestration in soils, but these practices may enhance N2O emissions. Besides, the improvement of crop N-use efficiency through effective management of manure and slurry, by growing catch crops or by delaying the ploughing of leys, is of prime importance to reduce N2O emissions. Grassland: concerning grassland and grazing management, permanent conversion from arable to grassland provides high soil carbon sequestration while increasing or decreasing the livestock density seems not to be an appropriate mitigation option. From the study of the multiple interrelations between gases and between farm compartments, the following mitigation options are advised for organic mixed crop-dairy systems: (1) actions for increasing energy efficiency or fuel savings because they are beneficial in any case, (2) techniques improving efficiency of N management at field and farm levels because they affect not only N2O and NH3 emissions, but also nitrate leaching, and (3) biogas production through anaerobic digestion of manure because it is a promising efficient method to mitigate greenhouse gas emissions, even if the profitability of this expensive investment needs to be carefully studied. Finally, the way the farmer implements the mitigation options, i.e. his practices, will be a determining factor in the reduction of greenhouse gas and NH3 emissions.KeywordsAgricultureGreenhouse gasAmmoniaAbatementMixed crop-dairy systemsOrganicLivestockManureGrasslandCarbon storageSoil carbon sequestration
- Research Article
39
- 10.1016/j.atmosenv.2017.09.009
- Sep 9, 2017
- Atmospheric Environment
Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation
- Research Article
14
- 10.1016/j.spc.2024.02.024
- Feb 22, 2024
- Sustainable Production and Consumption
Effect on greenhouse gas emissions (CH4 and N2O) of straw mulching or its incorporation in farmland ecosystems in China
- Research Article
51
- 10.1016/j.atmosenv.2015.08.060
- Aug 22, 2015
- Atmospheric Environment
Assessing impacts of alternative fertilizer management practices on both nitrogen loading and greenhouse gas emissions in rice cultivation
- Research Article
122
- 10.1023/b:clim.0000038226.60317.35
- Aug 1, 2004
- Climatic Change
The Denitrification-Decompostion (DNDC) model was used to estimate the impact of change in management practices on N2O emissions in seven major soil regions in Canada, for the period 1970 to 2029. Conversion of cultivated land to permanent grassland would result in the greatest reduction in N2O emissions, particularly in eastern Canada wherethe model estimated about 60% less N2O emissions for thisconversion. About 33% less N2O emissions were predicted for a changefrom conventional tillage to no-tillage in western Canada, however, a slight increase in N2O emissions was predicted for eastern Canada. GreaterN2O emissions in eastern Canada associated with the adoption of no-tillage were attributed to higher soil moisture causing denitrification, whereas the lower emissions in western Canada were attributed to less decomposition of soil organic matter in no-till versus conventional tilled soil. Elimination of summer fallow in a crop rotation resulted in a 9% decrease in N2O emissions, with substantial emissions occurringduring the wetter fallow years when N had accumulated. Increasing N-fertilizer application rates by 50% increased average emissions by 32%,while a 50% decrease of N-fertilizer application decreased emissions by16%. In general, a small increase in N2O emissions was predicted when N-fertilizer was applied in the fall rather than in the spring. Previous research on CO2 emissions with the CENTURY model (Smith et al.,2001) allowed the quantification of the combined change in N2O andCO2 emissions in CO2 equivalents for a wide range of managementpractices in the seven major soil regions in Canada. The management practices that have the greatest potential to reduce the combined N2O andCO2 emissions are conversion from conventional tillage to permanent grassland, reduced tillage, and reduction of summer fallow. The estimated net greenhouse gas (GHG) emission reduction when changing from cultivated land to permanent grassland ranged from 0.97 (Brown Chernozem) to 4.24 MgCO2 equiv. ha−1 y−1 (BlackChernozem) for the seven soil regions examined. When changing from conventional tillage to no-tillage the net GHG emission reduction ranged from 0.33 (Brown Chernozem) to 0.80 Mg CO2 equiv. ha−1 y−1 (Dark GrayLuvisol). Elimination of fallow in the crop rotation lead to an estimated net GHG emission reduction of 0.43 (Brown Chernozem) to 0.80 Mg CO2 equiv.ha−1 y−1 (Dark Brown Chernozem). The addition of 50% more or 50% less N-fertilizer both resulted in slight increases in combined CO2 and N2O emissions. There was a tradeoff in GHG flux with greaterN2O emissions and a comparable increase in carbon storage when 50% more N-fertilizer was added. The results from this work indicate that conversion of cultivated land to grassland, the conversion from conventional tillage to no-tillage, and the reduction of summerallow in crop rotations could substantially increase C sequestration and decrease net GHG emissions. Based on these results a simple scaling-up scenario to derive the possible impacts on Canada's Kyoto commitment has been calculated.
- Research Article
10
- 10.3390/agriculture12111878
- Nov 9, 2022
- Agriculture
Straw incorporation has a variety of impacts on greenhouse gas (GHG) emissions. However, few studies have focused on the effects of multi-year straw incorporation. In this study, a field experiment was established to study the effects of straw incorporation and water-saving irrigation on GHG emissions in the cold region of Northeast China. The following four treatments were included: (i) controlled irrigation (CI) with 1-year straw incorporation (C1), (ii) controlled irrigation with 5-year straw incorporation (C5), (iii) flooded irrigation (FI) with 1-year straw incorporation (F1), and (iv) flooded irrigation with 5-year straw incorporation (F5). The fluxes of N2O, CO2, and CH4 were measured by the static chamber–gas chromatography method, and their global warming potential (GWP) and greenhouse gas intensity (GHGI) in units of CO2-equivalent at the 100-year scale were calculated. The results showed that the 5-year straw incorporation reduced N2O emissions but increased CH4 emissions. Compared with C1 and F1, C5 and F5 reduced N2O emissions by 73.1% and 44.9%, respectively, while increasing the CH4 emissions by 101.7 and 195.8%, respectively. Under different irrigation regimes, CI reduced CH4 emissions by 50.4–79.7% while increasing CO2 emissions by 8.2–44.9% compared with FI. The contribution of N2O and CO2 emissions were relatively high at the mature and milk stages, respectively, with a range of 16–54% and 41–52% for the treatments. In contrast, CH4 emissions were mainly manifested at the tillering stage, with a contribution of 36–58% for the treatments. Affected by higher CH4 emissions in FI, the GWP of CI was 1.4–47.6% lower than FI. In addition, the yield of CI was 10.0–11.5% higher than FI, which resulted in a GHGI of 11.5–52.4% lower than FI, with C5 being the lowest. The irrigation regime of CI combined with 5-year straw incorporation was an effective agronomic measure to increase yield and reduce GHG emissions from paddy fields in the cold region of Northeast China.
- Research Article
11
- 10.1016/j.agwat.2021.107403
- Dec 17, 2021
- Agricultural Water Management
Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China
- Research Article
2
- 10.3390/agriculture14122251
- Dec 8, 2024
- Agriculture
Ratoon rice can improve rice yield by increasing the multiple cropping index in China. However, the greenhouse gas (CH4 and N2O) emission characteristics from ratoon rice fields and the cultivation methods to reduce CH4 and N2O emissions are rarely reported. This study first conducted the analysis of genotype differences in greenhouse gas emission fluxes using five strong ratoon ability rice varieties in 2020. Second, water management methods, including alternating the wet–dry irrigation (AWD) pattern and conventional flooding irrigation (CF) during the main season, were carried out in 2021. CH4 and N2O emission flux, agronomic traits, and rice yield during both main and ratoon seasons were investigated. The results showed that the CH4 emission flux during the main and ratoon seasons was 157.05–470.73 kg·ha–1 and 31.03–84.38 kg·ha–1, respectively, and the total N2O emission flux was 0.13–0.94 kg·ha–1 in the ratoon rice system over the two seasons (RRSTS). Compared with the main season, the CH4 emission flux during the ratoon season was significantly reduced, thus decreasing the greenhouse gas global warming potential (GWP) and greenhouse gas emission intensity (GHGI) in the ratoon rice system. Cliangyouhuazhan (CLYHZ) showed a high yield, and the lowest GWP and GHGI values among the five rice varieties in RRSTS. Compared with CF, the AWD pattern reduced the CH4 emission flux during the main and ratoon seasons by 67.4–95.3 kg·ha–1 and 1.7–5.1 kg·ha–1, respectively, but increased the N2O emission flux by 0.1–0.6 kg·ha–1 during the RRSTS. Further, compared with CF, the AWD pattern had a declined GWP by 14.3–19.4% and GHGI by 30.3–34.3% during the RRSTS, which was attributed to the significant reduction in GWP and GHGI during the main season. The AWD pattern significantly increased rice yield by 21.9–22.9% during the RRSTS, especially for YX203. Correlation analysis showed that CH4, GWP, and GHGI exhibited significant negative correlations with spikelet number per m2 and the harvest index during the main and ratoon seasons. Collectively, selecting the high-yield, low-emission variety CLYHZ could significantly reduce greenhouse gas emissions from ratoon rice while maintaining a high yield. The AWD pattern could reduce total CH4 emission during the main season, reducing the GWP and GHGI while increasing the ratoon rice system yield. It could be concluded that a variety of CLYHZ and AWD patterns are worthy of promotion and application to decrease greenhouse gas emissions in the ratoon rice area in the upper reaches of Yangtze River, China.
- New
- Research Article
- 10.1016/j.jenvman.2025.127831
- Nov 7, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127801
- Nov 7, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127873
- Nov 7, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127927
- Nov 7, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127910
- Nov 6, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127913
- Nov 6, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127741
- Nov 6, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127875
- Nov 6, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127814
- Nov 6, 2025
- Journal of environmental management
- New
- Research Article
- 10.1016/j.jenvman.2025.127383
- Nov 1, 2025
- Journal of environmental management
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.