Abstract

Disinfection byproducts (DBPs) in drinking water have been linked to various diseases, including colon, colorectal, rectal, and bladder cancer. Trichloroacetamide (TCAcAm) is an emerging nitrogenous DBP, and our previous study found that TCAcAm could induce some changes associated with host-gut microbiota co-metabolism. In this study, we used an integrated approach combining metagenomics, based on high-throughput sequencing, and metabolomics, based on nuclear magnetic resonance (NMR), to evaluate the toxic effects of TCAcAm exposure on the gut microbiome and urine metabolome. High-throughput sequencing revealed that the gut microbiome's composition and function were significantly altered after TCAcAm exposure for 90 days in Mus musculus mice. In addition, metabolomic analysis showed that a number of gut microbiota-related metabolites were dramatically perturbed in the urine of the mice. These results may provide novel insight into evaluating the health risk of environmental pollutants as well as revealing the potential mechanism of TCAcAm's toxic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.