Abstract

Phenylpropanoid (PPPN) compounds are widely used in agriculture, medical, food, and cosmetic industries because of their multiple bioactivities. Alternaria sp. MG1, an endophytic fungus isolated from grape, is a new natural source of PPPNs. However, the PPPN biosynthesis pathway in MG1 tends to be suppressed under normal growth conditions. Starvation has been reported to stimulate the PPPN pathway in plants, but this phenomenon has not been well studied in endophytic fungi. Here, metabolomics analysis was used to examine the profile of PPPN compounds, and quantitative reverse transcription-polymerase chain reaction was used to detect the expression of key genes in the PPPN biosynthesis pathway under starvation conditions. Starvation treatment significantly increased the accumulation of shikimate and PPPN compounds and upregulated the expression of key genes in their biosynthesis pathways. In addition to previously reported PPPNs, sinapate, 4-hydroxystyrene, piceatannol, and taxifolin were also detected under starvation treatment. These findings suggest that starvation treatment provides an effective way to optimize the production of PPPN compounds and may permit the investigation of compounds that are undetectable under normal conditions. Moreover, the diversity of its PPPNs makes strain MG1 a rich repository of valuable compounds and an extensive genetic resource for future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.