Abstract

To date, we have little knowledge on the overall metabolic status of neonates with intrauterine growth retardation (IUGR). In the last few years, the analysis of metabolomics has assumed an important clinical role in identifying “disorders” in the metabolic profile of patients. The aim of this work has been to analyze the urine metabolic profiles of neonates with IUGR and compare them with controls to define the metabolic patterns associated with this pathology. To our knowledge, this is the first study of metabolomics performed on neonates with IUGR. Recruited for the study were 26 neonates with IUGR diagnosed in the neonatal period and with weight at birth below the 10th percentile and 30 neonates of proper gestational weight at birth (controls). In the first 24 hours (prior to feeding) (T1) and about 4 days after birth (T2), a urine sample was taken non-invasively from each neonate. The samples were then frozen at −80°C up to the time of the analysis by proton nuclear magnetic resonance spectroscopy (1H-NMR). The data contained in the NMR spectra obtained from the single samples were statistically analyzed using the Principal Components Analysis and the Partial Least Squares-Discriminate Analysis. By means of a multivariate analysis of the NMR spectra obtained, it was possible to highlight the differences between the two groups (IUGRs and controls) owing to the presence of different metabolic patterns. The discriminants in the urine metabolic profiles derived essentially from significant differences in certain metabolites such as: myo-inositol, sarcosine, creatine and creatinine. The metabolomic analysis showed different urine metabolic profiles between neonates with IUGR and controls and made it possible to identify the molecules responsible for such differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.